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Abstract The state of the groundwater inverse problem is
synthesized. Emphasis is placed on aquifer characteriza-
tion, where modelers have to deal with conceptual model
uncertainty (notably spatial and temporal variability),
scale dependence, many types of unknown parameters
(transmissivity, recharge, boundary conditions, etc.),
nonlinearity, and often low sensitivity of state variables
(typically heads and concentrations) to aquifer properties.
Because of these difficulties, calibration cannot be sepa-
rated from the modeling process, as it is sometimes done
in other fields. Instead, it should be viewed as one step in
the process of understanding aquifer behavior. In fact, it is
shown that actual parameter estimation methods do not
differ from each other in the essence, though they may
differ in the computational details. It is argued that there
is ample room for improvement in groundwater inversion:
development of user-friendly codes, accommodation of
variability through geostatistics, incorporation of geo-
logical information and different types of data (tempera-
ture, occurrence and concentration of isotopes, age, etc.),
proper accounting of uncertainty, etc. Despite this, even
with existing codes, automatic calibration facilitates
enormously the task of modeling. Therefore, it is con-
tended that its use should become standard practice.

R�sum� L’�tat du probl�me inverse des eaux souter-
raines est synth�tis�. L’accent est plac� sur la caract�ri-
sation de l’aquif�re, o� les mod�lisateurs doivent jouer
avec l’incertitude des mod�les conceptuels (notamment la
variabilit� spatiale et temporelle), les facteurs d’�chelle,
plusieurs inconnues sur diff�rents param�tres (transmis-
sivit�, recharge, conditions aux limites, etc.), la non li-
n�arit�, et souvent la sensibilit� de plusieurs variables

d’�tat (charges hydrauliques, concentrations) des pro-
pri�t�s de l’aquif�re. A cause de ces difficult�s, le cali-
brage ne peut Þtre s�par� du processus de mod�lisation,
comme c’est le cas dans d’autres cas de figure. Par ail-
leurs, il peut Þtre vu comme une des �tapes dans le pro-
cessus de d�termination du comportement de l’aquif�re. Il
est montr� que les m�thodes d’�valuation des param�tres
actuels ne diff�rent pas si ce n’est dans les d�tails des
calculs informatiques. Il est montr� qu’il existe une large
panoplie de techniques d ‹inversion : codes de calcul
utilisables par tout-un-chacun, accommodation de la va-
riabilit� via la g�ostatistique, incorporation d’informa-
tions g�ologiques et de diff�rents types de donn�es
(temp�rature, occurrence, concentration en isotopes, �ge,
etc.), d�termination de l’incertitude. Vu ces d�veloppe-
ments, la calibration automatique facilite �norm�ment la
mod�lisation. Par ailleurs, il est souhaitable que son uti-
lisation devienne une pratique standardis�e.

Resumen Se sintetiza el estado del problema inverso en
aguas subterr�neas. El �nfasis se ubica en la caracteriza-
ci�n de acu�feros, donde los modeladores tienen que en-
frentar la incertidumbre del modelo conceptual (princi-
palmente variabilidad temporal y espacial), dependencia
de escala, muchos tipos de par�metros desconocidos
(transmisividad, recarga, condiciones limitantes, etc), no
linealidad, y frecuentemente baja sensibilidad de varia-
bles de estado (t�picamente presiones y concentraciones) a
las propiedades del acu�fero. Debido a estas dificultades,
no puede separarse la calibraci�n de los procesos de
modelado, como frecuentemente se hace en otros campos.
En su lugar, debe de visualizarse como un paso en el
proceso de entendimiento del comportamiento del acu�-
fero. En realidad, se muestra que los m�todos reales de
estimaci�n de par�metros no difieren uno del otro en lo
esencial, aunque s� pueden diferir en los detalles com-
putacionales. Se discute que existe amplio espacio para la
mejora del problema inverso en aguas subterr�neas: des-
arrollo de c�digos amigables al usuario, acomodamiento
de variabilidad a trav�s de geoestad�stica, incorporaci�n
de informaci�n geol�gica y diferentes tipos de datos
(temperatura, presencia y concentraci�n de is�topos,
edad, etc), explicaci�n apropiada de incertidumbre, etc. A
pesar de esto, affln con los c�digos existentes, la calibra-
ci�n autom�tica facilita enormemente la tarea de mode-
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lado. Por lo tanto, se sostiene que su uso deber�a de
convertirse en pr�ctica standard.

Keywords Inverse problem · Aquifer · Groundwater ·
Modeling · Parameter estimation

Introduction

In broad terms, inverse modeling refers to the process of
gathering information about the model from measure-
ments of what is being modeled. This includes two related
concepts: model identification and parameter estimation.
The latter will be used here as being synonymous with
calibration. Model identification applies to methods to
find the nature (features) of the model, such as the gov-
erning equations, boundary conditions, time regime, or
heterogeneity patterns. Parameter estimation, instead, is
restricted to assigning values to the properties character-
izing those features.

The above definitions apply to groundwater modelling
without much modification. In fact, it can be argued that
some sort of inversion has always been standard practice
in hydrogeology. For example, hydrogeologists perform
pumping tests to characterize aquifers. These tests are
interpreted by, first, identifying the most appropriate
model (on the basis of actual measurements and geology)
and, then, estimating model parameters by curve fitting.
This can be facilitated by automatic procedures, which
have become rather standard in fields where analytical
solutions are scarce, such as the unsaturated zone (Kool
and Parker 1988; Hollenbeck and Jensen 1998). Auto-
matic calibration has also become standard in fields
where appropriate tests can be performed to characterize
spatial variability: medicine, where it is termed “scan-
ning” or “tomography” (Rudin et al. 1999; R
hli et al.
2002); geophysics (Sambridge and Mosegaard 2002); and
many others. However, groundwater modeling displays
several peculiarities that collectively sets it apart from
modeling in other fields:

– Cost. Groundwater models are relatively expensive to
run. They require building large systems of equations
(to get an accurate and realistic picture of the system)
that need to be solved for each model run. In addition,
advances in computer science are used to increase the
quality of the model performance rather than to reduce
execution times.

– Time dependence. State variables such as heads and
concentrations are time dependent. Many flow prob-
lems are essentially under steady state conditions. Yet,
even in this case, the information might be contained
in temporal fluctuations of heads, thus deserving
transient modeling.

– Heterogeneity. Values of hydraulic conductivity, K,
which is often the most dominant hydraulic property,
may vary over several orders of magnitude. The same
can be said about transmissivity, which is essentially
equivalent to K in 2D models (hereinafter transmis-

sivity and hydraulic conductivity will be used inter-
changeably).

– Different types of parameters. While efforts are often
concentrated on transmissivity, other parameters (re-
charge, boundary fluxes, etc.) may be equally uncer-
tain and relevant.

– Scale dependence. Parameters measured in the field
often represent a small portion of the aquifer. As a
result, they are qualitative and quantitatively different
from what is needed in the model.

– Model uncertainty. Geometry of the aquifer and het-
erogeneity patterns are controlled by the geology,
which is never known accurately.

– Low sensitivity. Depending on the problem, state
variables may display low sensitivity to model pa-
rameters (i.e. their information content is low). In
particular, heads (the most frequent and sometimes
unique type of measurement) sometimes contain little
information about hydraulic conductivity.

Because of the above features, the aquifer model predic-
tions are highly uncertain. Moreover, parameter estima-
tion cannot be formulated as clearly as in other fields.
That is possible for pumping test interpretation, where
one can indeed take heads straight from the test, enter
them in a code and derive parameter values after a
moderately qualitative model analysis. In aquifers, one is
forced to cast inversion as one step of the modeling
process. Many of these features are shared by ground-
water’s sister science, surface water hydrology, where
many of these issues also have been addressed (Beven
1993; Gupta et al. 1999).

Another consequence of the singularities of ground-
water inversion is its relative isolation. Many inversion
methods have been developed independently from those
in other fields. The earliest methods were based on simply
substituting heads, assumed to be known, into the flow
equation, which leads to a first order partial differential
equation in transmissivity (Stallman 1956). This method,
termed “direct” by Neuman (1973), is relatively simple to
understand and has been widely used after Nelson (1960,
1961). In fact, it allowed deriving transmissivities from
flow nets based on head measurements (Bennet and
Meyer 1952). Unfortunately, this approach has several
drawbacks. First, it requires knowing heads (and recharge,
storage coefficient and boundary conditions) over the
whole domain in space and time. This can only be
achieved through interpolation, which introduces
smoothing and errors, so that the estimated transmissivity
values become somewhat artificial. Second, it is unstable
(small errors in heads cause large errors in transmissivi-
ty). To overcome the first problem, most recent inversion
methods use what Neuman (1973) termed the indirect
approach, which consists of acknowledging that mea-
surements contain errors and finding the hydraulic prop-
erties that minimize these errors. That is, parameters are
found by minimizing an objective function, which may
become a huge computational task. To overcome insta-
bilities, a number of approaches can be taken: adding a
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regularization term to the objective function to dampen
unwarranted oscillations, considering additional types of
data, reducing the number of parameters to be estimated
without losing the ability to reproduce spatial variability,
etc. These issues (computation, stabilization, different
types of data, spatial variability) have remained the focus
of much research. Reviews of them are presented by Yeh
(1986), Carrera (1987), Kool et al. (1987), McLaughlin
and Townley (1996) and de Marsily et al. (1999).
Therefore, a thorough review of the state of the art in
aquifer modeling inversion would be superfluous.

In this context, the objective of this paper is to describe
the current state of inverse modeling for aquifer charac-
terization. Emphasis is placed on seeking similarities of
existing methods and on discussing how they are used,
rather than describing them exhaustively. It is argued that

calibration should be viewed as a necessary step in
modeling and the paper is structured to mimic the mod-
eling process (Fig. 1). The following section of this paper
is devoted to outlining the roles of knowledge and data in
the definition of the conceptual model, arguably the most
frequent source of errors in groundwater modeling (Bre-
dehoeft 2004). Methods for representing aquifer proper-
ties in terms of a hopefully small number of unknowns to
be optimized (the so called model parameters) are pre-
sented in the section entitled “What is to be estimated?”.
The next natural step is to optimize (calibrate) the value
of the model parameters. Actual calibration methods and
codes are presented in the sections, “How to estimate the
model parameters, p”; and “How codes work”. Once the
parameters have been obtained, one needs to check the
quality of the resulting model, which is addressed in the

Fig. 1 Schematic representa-
tion of the modeling process
(the Aznalc�llar site, Castro et
al. 1999). Step 1. All available
information about the real sys-
tem is collected and used to
define the plausible conceptual
models (M1, M2, M3, etc.).
Step 2. Conceptual models are
expressed in terms of governing
equations (in the inset, T is
transmissivity, h head and q
represents sink and source
terms; color patterns in M1,
M2, M3 differentiate different
geological formations). Step 3.
These equations are discretized
and solved in a finite set of
points (in the inset, a is the
conductance matrix and h and b
are vectors containing heads
and sink/source terms). Also,
unknown hydraulic properties
(i.e. areal recharge) are dis-
cretized as a function of a set of
model parameters p. Step 4.
These model parameters are
optimized in such a way that (1)
a good fit between calculated
(red line) and measured data
(blue dots) is obtained and (2)
derived hydraulic properties are
“plausible”. Step 5. Error anal-
ysis must be performed and, if
needed, some of the initial
conceptual models can be dis-
missed through new experi-
ments. Otherwise, the model is
operative
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section entitled, “How good is the model?”. Actual ap-
plication trends are discussed in the section entitled,
“What is actually done?”. The paper ends with a discus-
sion on future challenges.

The conceptual model: knowledge and data

Knowledge and data are the basis of the conceptual
model, which represents what is going to be actually
modeled. Knowledge and data concepts have been de-
fined in many different ways. An often encountered point
of view is that “knowledge” consists in beliefs about re-
ality. In science and philosophy it is of concern whether
beliefs are justifiable and true. In this view, only if beliefs
are justifiable and true are they deemed knowledge. The
term “data” is used here to mean all the pieces of infor-
mation about the aquifer, not only hard numbers for
measurements in the field.

As shown in Fig. 1, groundwater models are based on
generic scientific knowledge on the behavior of ground-
water and site specific data. This leads to a site specific
understanding, which can be expressed in terms of
mathematical equations. These equations are often ma-
nipulated to get a set of discretized equations that can be
solved numerically.

Data are used not only to define qualitatively the
conceptual model, but also to define it quantitatively.
Table 1 displays some of the types of data and the role
they play in modeling. They can be classified according to
several criteria. One distinction can be made between
qualitative (“soft”) and quantitative (“hard”) data. An-
other distinction can be stated considering their temporal
behavior: static data refer to quantities that remain con-
stant in time while dynamic data relate to quantities that
change in time. A third distinction can be made between
data about the parameters to be estimated and measure-
ments of state variables (heads, fluxes, etc.).

Quantitative data are acquired through measurements,
which contain errors. Therefore, a probability density

function (hereinafter referred to as pdf) should be used
instead of single values to define measurements. A
Gaussian distribution is often used, both because it has
been proven to suitably describe many variables (e.g. log-
transmissivity, hereinafter referred to as log-T) and be-
cause it can be fully described by the mean and the
standard deviation. Given the ease of use of this distri-
bution, data that do not follow a Gaussian pdf are often
transformed so that the resulting pdf is close to Gaussian
(e.g. transmissivity). This is a frequent source of errors,
because the fact that point values of log-T follow a
Gaussian distribution does not imply that the spatial dis-
tribution is multigaussian (G�mez-Hern�ndez and Wen
1998). In fact, the opposite can often be argued (Meier et
al. 1999). Yet, the multigaussian feature of log-T is the
most frequent assumption in hydrogeology. Geostatistical
software may be used to generate alternative spatial dis-
tributions, for example using Markov-chain methods
(Weissmann et al. 1999).

Transformations of raw measurements of state vari-
ables may also be appropriate to increase the sensitivity of
data to parameters. This topic has received a lot of at-
tention in surface water hydrology (Meixner et al. 1999).
A groundwater example of this trend is to use the total
observed mass at an outflow point instead of individual
concentration values when modeling a breakthrough
curve. Peak concentration and peak time can also be used
(e.g. Woodbury and Rubin 2000). The same can be
achieved by using different types of data or by employing
an adequate weighting scheme (see, e.g. Wagner and
Gorelick 1987 and Anderman and Hill 1999). Concerning
the use of different data types, the information content of
data is problem dependent, so that it is difficult to give
general rules. Including flow rate data in the calibration
improves sensitivity to transmissivity (Larocque et al.
1999). Temperature data can be informative of vertical
fluxes (Woodbury et al. 1987). Environmental isotopes
and age data may be informative about regional flow
trends (Varni and Carrera 1998). Chen et al. (2003) used
subsidence rates to help in the estimation of permeability
of aquitards. Streamflow gains and losses were used by
Hill (1992) to help in model calibration. In short a wide
range of state variables can be used.

Data can be incorporated into the inversion procedure
in different ways. Most of them can be summarized by
considering a vector w containing both observations of
state variables, h, and model parameters, p:

w ¼
h

p

 !
¼

h�

p�

 !
þ

�h

�p

 !
ð1Þ

where h and p represent true values, h*and p* represent
measurements (or appropriate transformations; p* is
usually termed “prior estimate”), and �h and �p represents
errors. It is reasonable to assume that, a priori, errors in
measurements of state variables are independent of errors
in those of parameters. In fact, it is often reasonable to
assume that all measurement errors are independent.
Dependence between data arises as a result of the

Table 1 Classification of the types of data commonly used in
hydrogeology

Type Example Use

Knowledge Darcy’s law validity,
dimensionality, B.C.’s, etc

Governing
equations

SOFT DATA
Qualitative Geology (heterogeneity) Parameterization
Quantitative
(indirect)

Geophysics
Remote sensing
Grain size analysis
Measurement error
distribution

Calibration

HARD DATA
Quantitative Pumping test Prior Informa-

tionTracer test
Heads Calibration,

validationConcentrations
of chemical constituents
Other measurements
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abovementioned transformations. This is particularly true
for model parameters, where measurements never coin-
cide exactly with what is needed for the model. In order to
obtain p*, one should use all available data about the
parameters, such as point measurements of the parame-
ters, soft data (e.g. a geophysical image), or the like. All
these measurements are contained in a data vector zp.
Then, using zp, the prior estimation and covariance matrix
of p can be written as a generalization of the linear
conditional expectation equation:

p� ¼ E pjzp

� �
¼ EðpÞ þQpzeQ�1

zze zp � E zp

� �� �
ð2Þ

Cp ¼ E ðp� p�Þðp� p�Þtjzp

� �
¼ Qpp �QpzeQ�1

zzeQt
pze

ð3Þ
where Qpp, Qzze, and Qpze are respectively the (co)vari-
ances of model parameters, of measurements in zp, and
cross-covariances between model parameters and mea-
surements in zp and E[·] stands for expected value. In
practice, the way in which these matrices are evaluated
depends on the nature of p and of zp. If zp represents point
measurements, then the components of Qzze are obtained
from the covariance function (i.e., Qzze would be the
simple kriging matrix). In such a case, Qpze would also be
given by the covariance function, possibly averaged if p
represents block values of log-T. If the prior expectations
of p, E(p), and zp, E zp

� �
, are not known, then one may

need to extend these matrices to impose unbiasedness
conditions (hence the subindex e). Moreover, if zp in-
cludes not only point measurements but also soft data,
then the correlation among them should be included in
Qzze, which would then become the cokriging matrix.
Estimating cross covariances is difficult, so that one may
instead prefer to use universal kriging, kriging with an
external drift or other forms of non-stationary kriging. It
is clear that computing these matrices can be technically
complex. Details can be found in geostatistics texts (e.g.,
Kitanidis 1997; Rubin 2003). A step-by-step description
of how to handle increasingly large sets of different types
of data is provided by Carrera et al. (1993a). However,
regardless of the details on how these matrices are built,
two issues should be clear:

– Virtually all types of data on both state variables and
model parameters can be accommodated, except data
that are strictly qualitative (such as geological de-
scriptions).

– Statistical descriptions of these data are needed to
properly weigh them in the inversion.

The meaning of p in Eqs. (1), (2) and (3) has gone pur-
posefully undefined. This is the subject of the next sec-
tion.

What is to be estimated?

The coefficients in the governing equations (see Fig. 1)
are the hydraulic properties, whose value is to be esti-
mated. Regardless of their scalar or tensorial character, all
of them vary in space and some of them may vary in time
as well. To obtain the value of the hydraulic properties at
every point of a continuous model domain is impossible.
Therefore, a discrete representation is required. The pro-
cess of expressing hydraulic properties in terms of a
hopefully small number of model parameters (unknowns
to be found during the inversion process) is termed pa-
rameterization.

Choosing the set of model parameters is not easy.
Modelers may tend to use many degrees of freedom to get
an accurate description of variability. However, if the
number of model parameters is large, inverse problems
may become ill-posed (Hadamard 1902). Therefore, a
compromise is needed, which is the motivation of pa-
rameterization methods. Most of them express aquifer
properties as linear combinations of the unknown model
parameters (those to be estimated). That is, any hydraulic
property q (e.g., areal recharge) can be written as:

qðx; tÞ ¼ q0ðx; tÞ þ SN
i¼1pi � aq

i ðx; tÞ ð4Þ
Here, N is the number of model parameters pi, q0(x) is

an additive factor of the hydraulic property (e.g. the initial
value if initial model parameters are zero) and aq

i ðx; tÞ are
interpolation functions used to parameterize areal re-
charge in space and time. Discretization allows one to
write Eq. (4) in matrix form

q ¼ q0 þ Aqp ð5Þ
where Aq is a matrix containing the areal recharge in-
terpolation functions and p a vector containing the model
parameters. Thus, parameterization methods are defined
in terms of: (1) an estimation of the model parameters p,
(2) an interpolation method that describes the way matrix
A is calculated, and (3) an initial distribution of the hy-
draulic property q0. Parameterization methods differ in
the way in which these vectors and matrices are defined.
The most widely used are outlined below.

Zonation
Parameterization is accomplished by partitioning the do-
main in a set of subdomains (zones). Typically, each
component of the vector of model parameters, pi, is as-
sociated to one subdomain. Within each of them, prop-
erties q(x) are assumed constant or prescribed to vary in a
predefined manner and the value of the interpolation
function in Eq. (4) is zero if point x falls outside the zone
being considered.

Often, time and space variability are decoupled (Car-
rera and Neuman 1986a), so that

q ¼ ðx; tÞ ¼ pi f xðxÞf tðtÞ ð6Þ
where fx is a spatial function (e.g., fx may be aquifer
thickness if pi represents hydraulic conductivity of the
zone and q is transmissivity) and ft is a time function (e.g.

210

Hydrogeol J (2005) 13:206–222 DOI 10.1007/s10040-004-0404-7



ft may represent time varying recharge obtained by mass
balance in the soil and pi would be an unknown factor if q
is areal recharge).

The main advantage of zonation is its generality and
flexibility to accommodate the geological information
(e.g., zones may represent geological units or portions of
them). It should be stressed, however, that zonation does
not preclude the use of geostatistics. In fact, Clifton and
Neuman (1982) used zonation coupled to kriging.

While the zones need not be large, the original spirit of
zonation is to reduce the dimension of p, while ensuring
geological consistency (Stallman 1956). In fact, Carrera et
al. (1993b) argue that, when available, geological infor-
mation about parameter variability is so compelling (in
the sense that it can be included deterministically) that it
overcomes the advantages of conventional geostatistics.
Zonation is sometimes criticized as rigid. Hence, it is not
surprising that efforts have been made to optimize the
geometry of zones. A particularly appealing one is “ge-
omorphing” where the geometry of zones is derived
during the calibration process (Roggero and Hu 1998).

Point estimation
It can be viewed as the limiting case of zonation, as the
size of zones tends to zero (actually, to the element or cell
size). The formalism of Eq. (4) can still be used (e.g.
Meier et al. 2001). However, the dimension of the pa-
rameter space becomes so large that it may be more ap-
propriate to seek alternative formulations (Kitanidis and
Vomvoris 1983; Dagan 1985; McLaughlin and Townley
1996). These will be outlined in the next section.

Heuristic interpolation functions
The interpolation functions ai in Eq. (4) can be chosen
arbitrarily. Different types have been chosen, including
finite elements (Yeh and Yoon 1981), Ridge functions
(Mantoglou 2003), or others. These approaches offer
significant flexibility, but it is not clear how to define
prior information on model parameters.

Pilot points
In this case, p represents the unknown values of the
property q at a set of (pilot) points. The method, originally
devised by de Marsily et al. (1984), has become very
popular (e.g. Ramarao et al. 1995; Vesselinov et al. 2001;
Hernandez et al. 2003), to the point of becoming the
standard for non-linear geostatistical inversion. It can be
considered as a generalization of Eq. (4) for the case in
which measurements at the pilot points are uncertain. In
this case, Eq. (4) can be written as:

qðxÞ ¼ SdimðzpÞ
i¼1 lzp

i ðxÞzpi þ SN
j¼1l

PP
j ðxÞpj ð7Þ

where lzp
i and lPP

i are the (co-) kriging weights for mea-
surements and pilot points, respectively. Comparing Eqs.
(7) and (4), it is clear that q0 is the first term on the right
hand side and aq

i ðx; tÞ are equal to lPP
i ðxÞ. The main ad-

vantage of the method is its relative ease and flexibility.
Surprisingly, it has not been until 2004 that the need to

account for prior information on the parameters has been
recognized. Traditionally, direct measurements were used
for the first term in Eq. (7), but were disregarded during
the inversion process. Doherty (2003) includes a regu-
larization criterion penalizing non-homogeneity of the
model parameters and he does not use prior information.
Recently, Kowalsky et al. (2004) used a plausibility term
for the first time in the context of the pilot points method,
but the role of this term is not explored.

Conditional simulation
Methods described so far are implicitly based on seeking
some sort of optimal estimation. As will be seen in sub-
sequent sections, it is sometimes preferable to seek
equally likely simulations of q(x, t). Neuman and
Wierenga (2003) present a comprehensive strategy in the
context of simulation. Alternatives that have been used
include the self calibration approach of Sahuquillo et al.
(1992), G�mez-Hern�ndez et al. (1997) and Capilla et al.
(1998), in which q0(x) represents a simulation of the log-T
field conditioned by all (soft and hard) available infor-
mation and the terms ai (x, t)pi represent perturbations
imposed by a set of master points. Another possibility is
to express q(x) as a linear combination of random func-
tions (Roggero and Hu 1998; Hu 2002), where ai

0s re-
present conditional simulations and the model parameters
are simply weights of those simulations.

In summary, first, a representation of the variability of
the hydraulic properties is necessary and, second, the
most common parameterization schemes can be written
using Eq. (4) or, in spite of their quite different appear-
ance. The question now is how to find p.

How to estimate the model parameters, p

The estimation problem deals with the concept of “best”
set of model parameters. A good question is what does
“best” exactly mean? There is no perfect answer to this
question. In fact, there may not be a single set of model
parameters leading to a “good” representation of reality,
which motivates conditional simulation methods G�mez-
Hern�ndez et al. (1997) that aim at finding a collection of
equally probable parameters sets. Following is a de-
scription of the most widely used methods.

Optimization methods
In these methods, the parameter set is defined as the
minimum of an objective function. Originally, the ob-
jective function was motivated toward ensuring a good
match between computed and measured data (model fit).
This agreement (performance criterion in this case) can be
measured as the squared difference between computed
and measured heads. This squared difference is, in
mathematical terms, a norm (called L2 norm). However,
other norms are available and some have been used in
groundwater. For example, errors can be quantified as the
absolute value of the difference between measured and
computed values (L1 norm). Each norm has its own ad-
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vantages: the L2 norm is more sensitive to outliers than
L1, which is more difficult to work with than the L2 norm
(see Woodbury et al. (1987) for details and Xiang et al.
(1992) for an application to modeling). Defining a per-
formance criterion leads naturally to a minimization
problem, i.e., to seek the model parameters that make the
chosen norm minimum. Using the L2 norm, the objective
function to be minimized can be written as

Fh ¼ ðh� h�ÞtC�1
h ðh� h�Þ ð8Þ

where C�1
h is a matrix of weights. When Fh is used as

objective function, the problem often becomes ill-posed.
The solution becomes unstable, i.e. different parameter
sets lead to very similar values of Fh. Sometimes, this is
shown as extreme sensitivity to initial parameters, which
prompts modelers to argue that the solution is non-unique.
To overcome these problems, some researchers tend to set
upper and lower bounds on estimated parameters. In it-
self, this does not solve the problem. The solution simply
fluctuates between those (arbitrary) bounds, but its reli-
ability is not improved. This prompted Neuman (1973) to
add a plausibility term, Fp, to the objective function:

F ¼ Fh þ lFp ð9Þ

Fp ¼ ðp� p�ÞtC�1
p ðp� p�Þ ð10Þ

This equation was originally based on matching and
stability arguments. The term Fp can be viewed as a
regularization term in the sense of Tihonov (1963). In
hydrology, Emselem and de Marsily (1971) used it to
dampen oscillations. Also, Eq. (9) can be derived by
statistical means in which case Ch is viewed as the co-
variance matrix of measurement errors. Gavalas et al.
(1976) derived it by maximizing the posterior pdf of the
model parameters (maximum a posteriori, MAP). The
obtained objective function is equal to Eq. (9) with l
equal to 1. Carrera and Neuman (1986a) derived Eq. (9)
by maximizing the likelihood of the parameters given the
data (maximum likelihood estimation, MLE). The ad-
vantages of formulating Eq. (9) in a statistical framework
lie in the fact that it yields ways to estimate not only the
parameters controlling aquifer properties but also those
controlling their uncertainty (variances, variogram and
the like). As it turns out, the latter are no less important
than the former (Zimmerman et al. 1998).

The minimization of the objective function is an ar-
duous task because the relation between state variables
and parameters is usually non-linear. This is why for-
mulations of the inverse problem can be classified as
linear and non-linear.

Linear methods
Regardless of the formulation, the problem can be lin-
earized as:

hðpÞ ¼ h0 þ Jhpðp� p�Þ ð11Þ
where Jhp is the Jacobian (sensitivity matrix), containing
the derivatives of h with respect to p. Its computation is

discussed later (sensitivity equations). Assuming this
equation to hold, Eq. (2) can be generalized to obtain
parameters as the conditional expectation of p given h
(Dagan 1985; Rubin and Dagan 1987). For this purpose,
one needs to define the cross-covariances between data
and parameters Qph and the covariance matrix of data
Qhh, given by:

Qph ¼ CppJt
hp ð12Þ

Qhh ¼ JhpCppJt
hp þ Ch ð13Þ

Then

p̂ ¼ Eðpjp�; h�Þ ¼ p� þQphQ�1
hh ðh� � hðp�ÞÞ ð14Þ

By extending matrices Qph and Q�1
hh in a way similar to

what was done in Eqs. (2), (14) can also be viewed as
cokriging (Kitanidis and Vomvoris 1983; Hoeksema and
Kitanidis 1984), which results from minimizing the
variance of estimated parameters. Possibly, the most im-
portant thing is that Eq. (14) and its kriging variants do
not rely explicitly on any geometrical parameterization
scheme. Once Qhh has been found, one can theoretically
estimate p at any point. In fact, for Kitanidis and Vom-
voris (1983), the only parameters to be estimated are the
ones characterizing the statistical properties of the log-T
field. In general, the covariance of measurement errors is
also needed.

Non linear methods
One question that arises from Eq. (11) is why should the
linearization be performed at the prior estimates of the
parameters (linearization is made around the constant
mean in the original papers). Actually, Carrera and Glo-
rioso (1991) prove that it is much better to linearize
around the estimated parameters themselves, which
should be close to the true ones and may be far from the
prior estimates. In practice, this is achieved by iteratively
linearizing at the parameters obtained in the previous it-
eration. Carrera and Glorioso (1991) also showed that the
result is identical to the one obtained by minimizing Eq.
(9), and that Eq. (14) yields the same results as the first
iteration of a Gauss-Newton method to minimize Eq. (9).
This closes the loop. As it turns out, all the methods
discussed previously and summarized in Table 2, are
identical from the estimation viewpoint.

Differences among methods are restricted to the
characterization of statistical parameters and to the eval-
uation of uncertainty. Without discussing how different
methods deal with these issues, the next section is devoted
to arguing that indeed they are important.

How codes work

In essence, most codes work by following an iterative
process such as:
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1. Initialization: Read input data, set iteration counter
i=0, initialise parameters, p0

2. Solve the simulation problem, h(pi), compute the ob-
jective function Fi, and possibly its gradient (assuming
that it is continuously differentiable), gi and the Jaco-
bian matrix, Jhp.

3. Compute an updating vector, d, possibly using infor-
mation on previous iterations, as well as gi and Jhp.

4. Update parameters, piþ1 ¼ pi þ d
5. If convergence has been reached, then stop. Otherwise,

set i=i+1 and return to 2.

These steps are rather straightforward, except for the
definition of the updating direction, d, and the computa-
tion of g and Jhp. The most frequent methods for these are
outlined below.

Computing the updating step, d
Computation of d falls within the realm of optimization.
Literature on numerical optimization methods is exten-
sive, but only some of these have been applied to the
solution of the groundwater inverse problem. They are
summarized in Table 3. Cooley (1977) proposed using
Marquardt’s method (Marquardt 1963), which is based on
minimizing a quadratic approximation of the objective
function while limiting the size of the step to be taken at
each iteration. This method is quite powerful, in the sense
that it often converges in a small number of iterations, but
expensive because it requires computing the Jacobian
matrix. Carrera and Neuman (1986b) propose using a
combination of quasi-Newton and conjugate gradient
methods. These are not as robust as Marquardt’s method
but their cost per iteration is much smaller, as they only
need to compute the gradient of the objective function.
The choice of one or the other is problem dependent.

Table 2 Summary of estimation methods. Notice that they are all
quite similar despite their apparent differences. Linear methods
look different, but Carrera and Glorioso (1991) showed that they

can be viewed as the first iteration of non-linear methods. All
methods are explicitly stated in the section, “How to estimate the
model parameters, p”

Method Type Estimator Algorithm
(Eq. no.)

Reference

Least squares Non linear Fh (8) Cooley (1977) Hill et al. (1998)
Maximum Likelihood
Estimation (MLE)

Non linear �2ln P(p|h) (9) Carrera and Neuman (1986a)

Conditional Expectation Linear or Non
linear

E(p|h) (14) Dagan (1985) Carrera and Glorioso
(1991)

Cokriging Linear or Non
linear

Estimation
variance

(14) Kitanidis and Vomvoris (1983),
Carrera et al. (1993a, b)

Maximum a posteriori (MAP) Non linear P(p|h) (9) with l=11 Gavalas et al. (1976)
1 Weighting factor of the regularization/plausibility term

Table 3 Comparison of minimization methods used in groundwater inverse modeling

Method Comput. needs Order of convergence Convergence1 References

Gauss-Newton, Marquardt F2, g3, J4 2 Local Cooley (1977)
Conjugate gradients F, g 1 Local Carrera and Neuman (1986b)
Simulated annealing,
Genetic algorithms

F 0 Global Rao et al. (2003) Tsai et al. (2003)

1 Global means that the method may theoretically escape from local minima. Local means that it is difficult for the method to escape from
a local minimum
2 Objective function
3 Gradient vector
4 Jacobian matrix

Table 4 Synthetic comparison
of methods to compute deriva-
tives. Cost per Gauss-Newton
iteration is estimated in terms of
simulation runs for a hypothet-
ical problem of 100 parameters
and 20 observation points. In
the case of direct nonlinear
problems (i.e., nonlinear gov-
erning equations, e.g. unsatur-
ated flow problem), it is as-
sumed that 10 iterations are
needed for the direct problem

Method Advantages Disadvantages Cost per iteration

Linear problem Nonlinear problem

Direct derivation Exact Hard to program 1011 1101

Adjoint state Exact Hard to program 211 n/a
Finite differences Easy

programming
Not exact 101 1010

1 The computing cost of exact derivation and adjoint methods can be reduced if one takes advantage of
the fact that the system matrices are identical for all the parameters
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Cooley (1985) compared these two families of methods
and concluded that Marquardt method is superior (see
also Hill 1990, for additional comparisons).

Most codes use these methods, which are generically
termed descent methods, because they seek an improve-
ment of the objective function at each iteration. As a
result they tend to get stuck at local minima. Overcoming
local minima is the motivation of many methods based on
different variations of random searches such as simulated
annealing (Rao et al. 2003) or genetic algorithms (Tsai et
al. 2003). One method that has proven highly effective in
surface water hydrology is the “Shuffled Complex Evo-
lution” (Duan et al. 1992), which has not yet been tested
in groundwater. These methods have not been widely
used in practice both because their performance decreases
when the number of parameters is large (say, larger than
20), which is frequent in aquifer modeling, and because
they demand many evaluations of the objective function,
which is rather expensive in groundwater models.

The complexity of the forward problem is relevant
when comparing different optimization methods. For ex-
ample, if the direct problem is non-linear, the cost of
evaluating the objective function increases much more
than the cost of computing the gradient or the Jacobian
matrix, because the computation of these is non iterative.
This tends to favor order of convergence 2 methods over
either order 0 or 1 methods for non-linear problems.

Sensitivity equations
Sensitivities are the derivatives of state variables with
respect to the model parameters. They are useful for two
reasons. On the one hand, they can be employed in some
of the above optimization methods. On the other hand,
they yield useful information about the reliability of both

the model and its estimated parameters. In addition, as
they identify which data are most sensitive to which pa-
rameters, they can be used in the design of optimal net-
works (see section entitled, “How good is the model?”).
In essence, sensitivities can be obtained in three ways:
direct derivation, adjoint state and finite differences. A
comparison of these methods can be found in Carrera et
al. (1990a) and Carrera and Medina (1994).

Direct derivation is based simply on taking derivatives
of the simulation equations with respect to p. In the steady
state case of Fig. 1, this leads to

A
@h
@p
¼ @b
@p
� @A
@p

h ð15Þ

It should be noticed that Eq. (15) allows the compu-
tation of the derivatives of nodal heads with respect to the
parameters, but they can be computed at every point in
space using the finite elements method (FEM) interpola-
tion functions. The derivatives of any variable that de-
pends on heads can be also computed as e.g. flows.

Adjoint state method equations. This method is based
on viewing the minimization of F as an optimization
problem with respect to both h and p, while keeping the
state equations (Fig. 1) as equality constraints. The adjoint
state vector l is the set of Lagrange multipliers of the joint
optimization problem, which can be obtained from:

ltA ¼ �2ðh� h�ÞtC�1
h ð16Þ

The gradient of the objective function then becomes:

@F

@p
¼ lt @A

@p
h� @b

@p

� �
þ 2C�1

p ðp� p�Þ ð17Þ

Adjoint state equations can also be used for computing
the Jacobian matrix, being advantageous when the num-
ber of observation points is smaller than the number of
parameters, or for the exact computation of the Hessian
matrix (second order derivatives of the objective function
with respect to model parameters; (see computation de-
tails in Carrera and Medina 1994; Medina and Carrera
2003).

Finite differences are based on approximating the
derivatives by the incremental ratio.

@F

@p
¼ Fðpþ DpÞ � Fðp� DpÞ

2Dp
þ OðDp2Þ

¼ Fðpþ DpÞ
Dp

þ OðDpÞ ð18Þ

Finite differences can be used without added cost to
compute the Jacobian matrix. Mehl and Hill (2003)
compare the ways to perform this calculation.

The nature of the direct problem also affects the choice
of the method to compute derivatives. If it is non linear
(e.g. unsaturated flow), the computational effort of the
direct problem is very large, making finite differences
more expensive than exact methods (see Table 4). How-
ever, the ease of the finite difference method and its
ability to work from outside a simulation code has caused

Fig. 2 Contour lines of the objective function in the parameters P1
and P2. The ellipses (dashed) represent the linear approximation
implicit in Eq (3) and similar ones. Notice that the actual uncer-
tainty is larger
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an increase in the use of codes based on it, such as
UCODE and PEST (Poeter and Hill 1998; Doherty et al.
2002).

How good is the model?

Following the modeling procedure outlined in Fig. 1, once
the parameters have been estimated, it is necessary to
assess how good are both the model concept and esti-
mated parameters. Model quality is affected by three
factors (Beck 1987): (1) uncertainty about the model
structure, (2) uncertainty about the values of the param-
eters appearing in the model structure and (3) uncertainty
associated with predictions of the future behavior of the
system. The term uncertainty is used here to mean not
only random fluctuations in errors, but also biases (see,
e.g., Barth et al. 2001).

Uncertainty about the model structure
Conceptual models have many uncertain features because
data are never exhaustive and contain inconsistencies.
Modelers are forced to make simplifying assumptions.
Errors are introduced in the parameterization, in the dis-
cretization, in the selection of boundary conditions, etc.
Addressing this uncertainty often requires posing several
conceptual models. Different models can be compared in
terms such as model fit Eq. (8), residual distribution,
parameter correlation, and confidence intervals for pa-
rameters and predictions. Ideally, a good model should
lead to a good match with observations, uncorrelated
residuals, and reasonable parameter values. Still, several
models may fit all these criteria and one may need to
select one among them. Several model selection criteria
have been defined from the field of time series analysis
and applied to groundwater (Akaike 1974, 1977; Rissanen

Fig. 3 a Contours of predicted
value in the parameter space,
according to the model and ac-
cording to a linearization of the
model. b Confidence interval
(conf. int.) of prediction ac-
cording to the model and ac-
cording to a linearization of the
model. A third type of confi-
dence interval is shown, based
on a nonlinear approximation of
the model. The contours of this
nonlinear approximation are not
shown in (a) for clarity
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1978; Schwarz 1978; Hannan 1980; Kashyap 1982).
Carrera and Neuman (1986c) applied four of these criteria
to a synthetic test case and concluded that the Kashyap
criterion was the best. Similar results were obtained by
Carrera et al. (1990b) and by Medina and Carrera (1996).

Still, one might question the wisdom of selecting only
one model. This implies rejecting the others, which may
not be logical if they are consistent with available
knowledge and data. This line of argument leads to ac-
cepting a large set of models and using them all to
characterize uncertainty in model predictions (Beven and
Binley 1992; Beven and Freer 2001)

Difficulties associated with the calibration process
The most important difficulties associated with the opti-
mization are the problems of non-uniqueness, non-iden-
tifiability and instability. Non identifiability occurs when
more than one set of parameters leads to a given solution
of the forward problem. Non-uniqueness is present when
more than one set of parameters leads to minima of the
objective function. Instability is present when small
changes in the observations lead to large changes in the
estimated parameters, but is usually identified by a de-
pendence of the solution on the initial parameters. In
addition, optimization algorithms such as Marquardt and
conjugate gradients may get stuck into a local minimum,
a set of model parameters whose performance cannot be
improved by small changes in data, but which does not
represent the overall optimum. Carrera and Neuman
(1986b) discuss extensively these concepts and show that
they are closely related. In fact, they can all be charac-
terized by the region of uncertainty, even if it is linearized
(Fig. 2).

Instability and large uncertainty are different concepts,
but both are often associated to elongated confidence
regions, which can be characterized by the eigenvalues
and eigenvectors of the posterior covariance matrix. The
eigenvectors of this matrix form a set of orthogonal
vectors, each of which is associated to an eigenvalue. The
vector associated to the largest eigenvalue represents the
linear combination of parameters that has the largest un-
certainty, whereas the vector with the smallest eigenvalue
defines the direction with least uncertainty. If eigenvalues
are dramatically different, then one should expect insta-
bilities to occur. One of the effects is parameter correla-
tion. The parameters in Fig. 2 suffer from correlation: a
shift in the estimation of one parameter (say, P1) causes a
shift in the optimal value of the other (P2). In other words,
the estimated parameters are not independent. This de-
pendence causes the confidence intervals of the parame-
ters to be larger than they would have been if they were
independent.

To summarize the above, instabilities and large un-
certainties, though frequent, can be easily identified and
characterized. Tactics to combat these problems include:

– Regularization: This is what motivated adding Fp to
the objective function in (9). Weiss and Smith (1998)

comment on which prior information will most effec-
tively reduce uncertainty.

– Reducing the number of parameters: This is what
motivates the parameterization schemes discussed in
the section entitled, “What is to be estimated?”.

– Increasing the number and types of data, which was
discussed in the section, “The conceptual model:
Knowledge and data”.

– Optimizing the observation scheme: Observation net-
works and experiments can be designed to minimize
model uncertainty and/or to increase the ability of data
to discriminate among alternative models (Knopman
and Voss 1989; Usunoff et al. 1992)

Despite this, one may have to acknowledge that it is not
possible to find a unique solution to the problem. This
motivates some researchers to use stochastic simulation of
parameter fields conditional to data, rather than estima-
tion (e.g. G�mez-Hern�ndez et al. 1997). These tech-
niques generate large numbers of e.g. transmissivity fields
that satisfy the available head and transmissivity data. In
this way, one ends up with a number of models, rather
than one. Uncertainty is associated with the ensemble set
of all simulations, rather than to statistical measures of
uncertainty. As another alternative, Yapo et al. (1998)
study instability using a concept known as the pareto
optimum, which denotes the set of parameter vectors for
which improving one component of the objective function
causes a deterioration in another component.

Difficulties associated with predictions
of the future behavior of the system
All the above difficulties cause the model parameters to
have some uncertainty, which is inherited by the model
predictions. The possibility of multiple conceptual models
causes further uncertainty in the model predictions.
Therefore, evaluating uncertainty in prediction requires
analyzing the effect of both parameter and model uncer-
tainty. The latter is usually analyzed by simulating with
the models available and evaluating the range of predic-
tions (e.g., Medina and Carrera 1996). While systemati-
zation is needed, the fact that conceptual model building
is not systematic makes this objective hard to meet.
Hence, what follows concentrates on evaluating the effect
of parameter uncertainty.

There exist various methods for quantifying the pre-
diction uncertainty: Linear approximation, non-linear
approximation and Monte Carlo methods. They are out-
lined in Fig. 3. The linear method is relatively simple. It is
based on the a posteriori covariance matrix:

Sp ¼ Jt
hpC�1

h Jhp þ C�1
p ð19Þ

where Jhp is the Jacobian matrix, Ch the measurements
covariance matrix and Cp the parameters covariance
matrix.

If f is a prediction to be made with the model (f is a
function of parameters, p), a lower bound of its variance
is given by:
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Var ðf Þ ¼ @f

@p

� �t

Sp
@f

@p

� �
þ s2

p0 ð20Þ

where s2
p0 represents model errors independent of pa-

rameter uncertainties. This equation represents a linear
approximation, so that actual uncertainty may be larger
than that represented. This is why more sophisticated
approaches may be needed. Still, this equation allows one
to spell out quantitatively how the different factors affect
prediction uncertainty. In essence, prediction uncertainty
grows with:

1) Sensitivity of predictions to model parameters and
initial conditions. Obviously, a parameter is a source of
concern only if predictions are sensitive to it, as
measured by @f/@p. This is why sensitivity analyses
are sometimes performed instead of a formal error
analysis.

2) Uncertainty in model parameters (and/or initial state).
This is measured by the covariance matrix Sp.

Non linear methods are more difficult to apply. Vecchia
and Cooley (1987) present a way to compute nonlinear
confidence intervals. They conclude that (i) correspond-
ing linear and nonlinear confidence intervals are often
offset or shifted towards each other, and the nonlinear
ones are often larger, (ii) the variability in sizes of non-
linear confidence intervals is usually larger than the cor-
responding variability in linear confidence interval sizes,
(iii) the difference between the sizes of linear and non-
linear confidence intervals increases as the sizes of the
intervals increase, and (iv) prior information can alter the
size of the confidence intervals. Christensen and Cooley
(1999) present a measure to quantify model non-linearity.
The prediction analyzer of PEST currently includes
nonlinear confidence intervals.

The Monte Carlo method is the most computationally
intensive method. It is based on many forward problem
evaluations with different sets of parameters. Its main
advantages are that it is easy to understand, it yields a
probability density function and does not require difficult
assumptions. Its main problem is that it is hard to ascer-
tain the required number of simulations. An example of
this is the GLUE methodology (Generalized Likelihood
Uncertainty Estimation; Beven and Freer 2001).

What is actually done?

Application trends
The literature in scientific journals tends to concentrate on
the development of new methods and new interpretations.
Therefore it is not appropriate for identifying application
trends. Applications are most often found in internal re-
ports or special sessions of congresses. None of these are
easy to track exhaustively. Therefore, this section is bi-
ased by what can effectively be found and by the authors’
personal views. Despite the above, a search on the “web

of science” (http://go5.isiknowledge.com/portal.cgi),
which keeps track of all papers published in major jour-
nals, was performed. Results suggest that the number of
papers about inverse modeling remains more or less
steady (around 5% of those about groundwater modeling),
while the number of papers using inverse modeling has
slowly but steadily increased in the last 13 years. These
papers cover a broad range of topics. Many have been
cited in previous sections and some will be cited in the
remaining sections. It is difficult, however, to identify
trends. The only ones that emerge is that geostatistical
inversion tends to be used in relatively small scale
problems, such as the interpretation of hydraulic tests,
while large scale models tend to be based on zonation.
Since most groundwater applications can be classified in
one of these two categories, they deserve further attention
and are discussed below.

Geostatistical inversion
The use of geostatistics is motivated by the need to ad-
dress the variability of hydraulic properties (specifically
transmissivity) when modeling aquifers. In practice,
however, this need can be understood in two different
ways: (1) to constrain model parameters and (2) because
it is deemed necessary for model predictions. While these
two views are not exclusive, they rarely go together.

Methodologically, geostatistical inversion follows the
steps originally proposed by Clifton and Neuman (1982).
That is, one starts by proposing a stochastic model (i.e.,
whether the log-T is stationary, what is its variogram and
mean, etc). Second, available data is used to produce a
prior, best estimate of log-T and its covariance, using Eqs.
(2) and (3). Finally, these are used to obtain an estimate of
model parameters either by minimizing Eq. (9) or using
Eq. (14). Kitanidis and Vomvoris (1983) and Carrera and
Neuman (1986a) modified this concept by emphasizing
the need for optimal estimation of statistical parameters
(variances of errors, correlation distance and the like).
The importance of these parameters has been recognized
by many. In fact, this is one of the conclusions of Zim-
merman et al. (1998), after comparing different geosta-
tistical inversion techniques.

Successful applications to real field data are restricted
to relatively small-scale problems. These include hy-
draulic test interpretation (Yeh and Liu 2000; Meier et al.
2001; Vesselinov et al. 2001), well capture zone delin-
eation (Vassolo et al. 1998; Kunstmann et al. 2002; Harrar
et al. 2003), and others (Barlebo et al. 2004). The fact that
applications to large-scale aquifers are scarce reflects the
difficulty in modeling them, but also points out the two
limitations of geostatistics as it is most frequently used: it
fails to include geological information and it fails to re-
produce actual variability.

Geological information is normally expressed in terms
that are difficult to account for during inversion (depo-
sitional patterns, orientation of conductive features, and
the like). This type of information can become precise at
the large scale but rarely at the test scale. Here, the only
thing that can be said is that permeability is variable,
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which is properly acknowledged by geostatistics. Still,
when discrete features are identified, inversion gains
significantly by explicitly including them as deterministic
features. This was acknowledged by Meier et al. (2001),
who used information about the stress state of a shear
zone to define the anisotropy direction of fracture trans-
missivity.

Ironically, the main problem with geostatistical esti-
mation is the fact that it fails to reproduce actual vari-
ability. As discussed in the section, “How to estimate the
model parameters, p”, Eqs. (9) and (14) yield the condi-
tional expectation of log-T given the available data. As
such, the estimation says little about actual deviations
because the expected value filters them out. When data
are abundant, which is frequent in detailed hydraulic tests,
variability patterns can be delineated with some certainty
(e.g. Meier et al. 2001). Otherwise, only the estimation
covariance provides some information about variability
and about the continuity of high conductivity zones (paths
for solutes migration) or low conductivity barriers. An-
other source of hope for large-scale geostatistical inver-
sion is the use of geophysical data (Hubbard and Rubin
2000).

G�mez-Hern�ndez and coworkers (G�mez-Hern�ndez
et al. 1997; Capilla et al. 1998) address the above issue by
rejecting optimal estimation altogether and, instead, per-
forming conditional simulations. Ideally, the average of
all these simulations should be equal to the conditional
estimation, but each of them reproduces the assumed
variability. As such, when used for predicting processes
that are sensitive to variability (e.g., contaminant trans-
port), simulations are much more appropriate.

Geologically based inversion
The main difference between aquifer scale models and
test scale models is the degree of reliance on geology
when defining variability and the multiplicity of param-
eter types. Regarding variability, geological data are
rarely precise but cannot be ignored. Different formations,
or different units within a formation, may have different
properties. Thus, when these units can be outlined, the
worth of this information cannot be ignored. Unfortu-
nately, boundaries between units are rarely known accu-
rately. Hence, a lot of work may be needed to test dif-
ferent geometries whenever the effect of geometry is
found to be important. The process involves defining
geometry and testing it against available data, which is
repeated until a satisfactory fit is found. The procedure is
tedious, it involves interactions between modelers and
geologists, and it is not systematic. In fact, it does not get
properly documented, so that if the model is revised years
later, one is not sure about the reason behind the selected
model structure. Things are made worse by the fact that
not only transmissivity but also other types of parameters
need to be specified. In the experience of the authors of
this paper, ambiguities frequently exist about recharge
(both average amount and time variability), boundary
fluxes, pumping rates (the main finding of Castro et al.

1999, was that official pumping rates were badly under-
estimated) and the nature of river-aquifer interaction.

The somewhat chaotic nature of the process makes it
hard to describe in detail. Attempts have been made by
Cooley et al. (1986) and Hill (1998). Some trends can be
identified:

– Point values of hydraulic conductivity and transmis-
sivity are prone to error. Moreover they may be of little
use when modeling at scales much larger than the
pumping test in which they are based. These mea-
surements need to be put into the related geological
context.

– Dominant features (i.e. conductive fractured zones,
paleochannels, or the like) must be included in the
model even if they are not known accurately.

– Much information about aquifer behavior is contained
in discrete events (floods, big rainfalls). Taking full
advantage of these requires transient simulations.

– Model calibration is rarely unique (i.e., different model
structures may fit hard data satisfactorily). This un-
certainty ought to be acknowledged when performing
model predictions. Reducing it often requires the use
of complementary data as discussed in the section,
“The conceptual model: Knowledge and data”.

This kind of approach displays several drawbacks. On one
the hand, it does not account properly for uncertainty. The
resulting covariance matrix of model parameters is con-
ditioned not only on hard data, but also on the many
subjective decisions the modeler has made. While these
can be taken into account by making predictions with
several conceptual models, it is rarely done. On the other
hand, one is never sure about the validity of the model
beyond calibration conditions. In summary, the procedure
needs to be systematized. This is best done in a geosta-
tistical framework, hence the need to seek geostatistical
descriptions that take advantage of qualitative geology
data.

What comes next?

The discussion in the previous section makes it clear that
it is believed that the time is ripe for standard use of
inverse modeling in groundwater studies aimed at aquifer
characterization and management, a view which we share
with Poeter and Hill (1997).

In the 1970s, the U.S. Geological Survey promoted the
use of numerical modeling for aquifer studies. This led to
a significant rise in the quality of understanding of
groundwater flow by many hydrologists. Numerical
modeling forced them to be quantitatively consistent
when integrating different data types. Since this is never
straightforward, hydrologists were forced to test different
parameter values, to perform sensitivity analyses, and to
guess at what could be the cause behind observed data. In
the end, they might not be fully successful, but they
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gained understanding, which is what counts for proper
decision making.

The situation is now changing on several accounts. For
one, hydrologists are increasingly expected to make hard
decisions for which qualitative understanding is not suf-
ficient. Instead, accurate quantitative models are needed.
Second, the volume of data is also increasing. Long data
sets of heads, pumping history, and hydrogeochemical
measurements are becoming available. While they con-
tain valuable qualitative information, it is clear that much
more can be gained by using them quantitatively, i.e., by
building models that can match those data. Third, mod-
eling exercises such as INTRAVAL (Larsson 1992) have
made it clear that the most important issue when model-
ing an aquifer is the conceptual model. Since manual
calibration is very tedious, modellers have not been able
to concentrate sufficiently on conceptual issues. Auto-
matic calibration should change that.

In short, it is contended that conceptually sound and
quantitatively consistent modeling requires automatic in-
version. This allows the modeler to concentrate on the
qualitatively important issues, such as the definition of the
conceptual model, representation of spatial variability,
discussion of alternative management strategies, etc.
Also, this allows improved model building and use.
Therefore, it should be one of the challenges in the future
of hydrogeology. As it is, however, inverse modeling has
not reached a desired level of maturity. A number of
difficulties must be overcome. Some are listed below:

– Difficulty in running inversion codes. Since one has to
introduce data on parameterization, observations, their
reliability, etc., general purpose inversion codes are
cumbersome and hard to run. The emergence of codes
such as PEST or UCODE has changed that trend sig-
nificantly, but places an additional burden on the
modeler by requiring him or her to know programming
and the inside of codes. This could be alleviated by
developing ‘utility programs’ to enable the interfacing
of the inversion engine with the forward model.

– Incorporation of geological information. As discussed
earlier, zonation is the most convenient and widely
used approach for realistic incorporation of geological
data available in the form of maps. This is too rigid
and incomplete. Geological information is usually
“soft”, in the sense that boundaries between formations
underground are rarely known accurately. Moreover,
important features (paleochannels, water conducting
faults, etc.) may have gone unmapped. Furthermore,
even within a formation, there may be a lot of quali-
tative information (depositional patterns, continuity of
water conducting features, gradation of materials and
the like) that is difficult to incorporate in a zonation
framework. For solute transport problems, these sour-
ces of small scale variability may be just as important
as large scale trends. Presumably, they can be best
handled in a geostatistical framework. While some
approaches are available for incorporating them (i.e.,
treat each zone geostatistically, use geological maps as

soft information), existing codes lack sufficient ro-
bustness and flexibility to be of general use.

– Incorporation of age, environmental isotopic data,
temperature and other sources of information. As
discussed, using different types of data improves dra-
matically the stability of inversion and the robustness
of the model. In fact, a number of authors have shown
that incorporating these data does improve the reli-
ability of the model. The problem, again, lies in the
availability of easy-to-run, flexible codes.

– Representation of uncertainties. It has also been dis-
cussed that dealing with uncertainty is an integral part
of modeling. This is true both at the characterization
stage, where data contain errors and model structure is
never accurately known, and at the prediction stage.
Well informed decisionmaking can not be based on
single model predictions. Acknowledging uncertainties
in both model concept and parameters is required. As
discussed, linear estimates of uncertainty are very poor
(they may underestimate actual errors in orders of
magnitude; Carrera and Glorioso 1991). Alternative,
non-linear estimates of error are difficult to use for
hydrologists who are not familiar with statistics, even
though tools are becoming increasingly user-friendly.
Therefore, Monte Carlo simulation remains the most
appealing. An advantage is the relative ease to ac-
commodate conceptual model uncertainty. Still, at
present, Monte Carlo methods are extremely expensive
and again, not easy to use.

– Coupling to GIS. One of the drawbacks of inverse
modeling is the need to incorporate all causes of
variability; geology, soil properties and use, pumping,
etc. If any of them is missed (e.g., if the effects of a
pumping well are not incorporated), the algorithm will
react by modifying the parameters to circumvent the
effect of the error so as to best fit the measurements
(e.g., reduce recharge, increase transmissivity, etc.).
The resulting model is thus erroneous not only because
of the missing factor, but also because of those mod-
ifications. Conventional modeling is less sensitive to
this kind of error (one may be aware that model cal-
culations may be erroneous in areas affected by un-
known factors, but that does not affect the rest of the
model). Therefore, inverse modeling requires careful
accounting. As the history of aquifers becomes in-
creasingly complex (growing number of pumping
wells, evolving soil uses, improved knowledge of
aquifer geometry), so does the difficulty to incorporate
all factors. The tendency to incorporate all territorial
data in GIS sheds some hope on the possibility of in-
corporating all these data in a model. In fact, there
have been a number of efforts to link GIS to traditional
models (Gogu et al. 2001; Chen et al. 2002). It is clear,
however, that this need is more pressing for inverse
models. Efforts along the line of Graphical User In-
terfaces are starting.

All the above issues might suggest that inverse modeling
is not yet mature. It should be stressed, however, that all
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the above-mentioned difficulties are just that, difficulties.
They can be, and indeed are, overcome in practice
through laborious work. Moreover, these difficulties are
not specific of inverse modeling; they are mostly shared
by conventional modeling (although they are often ig-
nored). Finally, while it is true that further improvement
of programs is needed, it is not clear that their applica-
bility is more difficult than it was for the use of early
codes when the U.S. Geological Survey made modeling a
routine for aquifer studies. Routine application of inverse
modeling is the future. The sooner it starts, the better
prepared will hydrologists be to face the challenges of the
soon-to-come future.

Acknowledgments The final manuscript benefitted from comments
by Mary Hill, Matt Tonkin and Johan Valstar

References

Akaike H (1974) A new look at statistical model identification.
IEEE Trans Automat Contr AC-19:716–722

Akaike H (1977) On entropy maximization principle. In: Krish-
naiah PR (ed) Applications of statistics. North Holland, �ms-
terdam, pp 27–41

Anderman ER, Hill MC (1999) A new multi-stage ground-water
transport inverse method, Presentation, evaluation, and impli-
cations. Water Resour Res 35(4):1053–1063

Barlebo HC, Hill MC, Rosbjerg D (2004) Identification of
groundwater parameters at Columbus, Mississippi, using three-
dimensional inverse flow and transport model. Water Resour
Res 40(4):W0421110

Barth GR, Hill MC, Illangasekare TH, Rajaram H (2001) Predictive
modeling of flow and transport in a two-dimensional interme-
diate-scale, heterogeneous porous media. Water Resour Res
37(10):2503–2512

Beck MB (1987) Water quality modelling: a review of the analysis
of uncertainty. Water Resour Res 23(8):1393–1442

Bennet RR, Meyer RR (1952) Geology and groundwater resources
of the Baltimore area. Mines and Water Resour Bull 4, Mary-
land Dept of Geology

Beven K (1993) Prophecy, Reality and uncertainty in distributed
hydrological modeling. Adv Water Resour 16(1):41–51

Beven KJ, Binley AM (1992) The future of distributed models:
model calibration and uncertainity prediction. Hydrol Process
6(3):279–298

Beven KJ, Freer J (2001) Equifinality, data assimilation, and un-
certainty estimation in mechanistic modelling of complex en-
vironmental systems using the GLUE methodology. J Hydrol
249:11–29

Bredehoeft J (2004) Modeling: the conceptualization problem-
surprise. Hydrogeol J (this issue)

Capilla JE, G�mez-Hern�ndez JJ, Sahuquillo A (1998) Stochastic
simulation of transmissivity fields conditional to both trans-
missivity and piezometric head data—3. Application to the
Culebra formation at the waste isolation pilot plan (WIPP),
New Mexico, USA. J Hydrol 207(3–4):254–269

Carrera J (1987) State of the art of the inverse problem applied to
the flow and solute transport problems. In: Groundwater flow
and quality modeling, NATO ASI Ser: 549–585

Carrera J, Neuman SP (1986a) Estimation of aquifer parameters
under transient and steady-state conditions, 1. Maximum like-
lihood method incorporating prior information. Water Resour
Res 22(2):199–210

Carrera J, Neuman SP (1986b) Estimation of aquifer parameters
under transient and steady-state conditions, 2. Uniqueness,
stability and solution algorithms. Water Resour Res 22(2):211–
227

Carrera J, Neuman SP (1986c) Estimation of aquifer parameters
under transient and steady-state conditions, 3. Application to
synthetic and field data. Water Resour Res 22(2):228–242

Carrera J, Navarrina F, Vives L, Heredia J, Medina A (1990a)
Computational aspects of the inverse problem. In Proc. of VIII
international conference on computational methods in water
resources. CMP, pp 513–523

Carrera J, Heredia J, Vomvoris S, Hufschmied P (1990b) Fracture
Flow Modelling: Application of automatic calibration tech-
niques to a small fractured Monzonitic Gneiss Block. In:
Neuman N (ed) Proc hydrogeology of low permeability envi-
ronments, IAHPV, Hydrogeology, selected papers, vol 2, pp
115–167

Carrera J, Glorioso L (1991) On Geostatistical Formulations of the
Groundwater Flow Inverse Problem. Adv Water Resour
14(5):273–283

Carrera J, Medina A, Galarza G (1993a) Groundwater inverse
problem. Discussion on geostatistical formulations and valida-
tion. Hydrog�ologie (4):313–324

Carrera J, Mousavi SF, Usunoff E, Sanchez-Vila X, Galarza G
(1993b) A discussion on validation of hydrogeological models.
Reliability Eng Syst Saf 42:201–216

Carrera J, Medina A (1994) An improved form of adjoint-state
equations for transient problems. In: Peters, Wittum, Herrling,
Meissner, Brebbia, Grau, Pinder (eds) Proc X international
conference on methods in water resources, pp 199–206

Castro A, Vazquez-Su
e E, Carrera J, Jaen M, Salvany JM (1999)
Calibraci�n del modelo regional de flujo subterr�neo en la zona
de Aznalc�llar, Espa
a: ajuste de las extracciones [Calibration
of the groundwater flow regional model in the Aznalcollar site,
Spain: extractions fit]. In Tineo A (ed) Hidrolog�a Subterr�nea.
II,13. Congreso Argentino de Hidrogeolog�a y IV Seminario
Hispano Argentino sobre temas actuales de la hidrogeologia

Chen CX, Pei SP, Jiao JJ (2003) Land subsidence caused by
groundwater exploitation in Suzhou City, China. Hydrogeol J
11(2):275–287

Chen Z, Huang GH, Chakma A, Li J (2002) Application of a GIS-
based modeling system for effective management of petroleum-
contaminated sites. Env Eng Sci 9(5):291–303

Christensen S, Cooley RL (1999) Evaluation of confidence inter-
vals for a steady state leaky aquifer model. Adv Water Resour
22(8):807–817

Clifton PM, Neuman SP (1982) Effects of kriging and inverse
modeling on conditional simulation of the Avra valley aquifer
in southern Arizona. Wat Resour Res 18(4):1215–1234

Cooley RL (1977) A method of estimating parameters and as-
sessing reliability for models of steady state groundwater flow,
1, Theory and numerical properties. Water Resour Res
13(2):318–324

Cooley RL (1985) A comparison of several methods of solving
nonlinear-regression groundwater-flow problems. Water Re-
sour Res 21(10):1525–1538

Cooley RL, Konikow LF, Naff RL (1986) Nonlinear regression
groundwater-flow modeling of a deep regional aquifer system.
Water Resour Res 22(13):1759–1778

Dagan G (1985) Stochastic modeling of groundwater flow by un-
conditional and conditional probabilities: the inverse problem.
Water Resour Res 21(1):65–72

de Marsily GH, Lavedan G, Boucher M, Fasanino G (1984) In-
terpretation of interference tests in a well field using geosta-
tistical techniques to fit the permeability distribution in a res-
ervoir model. In: Verly et al (ed) Proc Geostatistics for natural
resources characterization. Part 2. D. Reidel Pub. Co. : pp 831–
849

de Marsily G, Delhomme JP, Delay F, Buoro A (1999) 40 years of
inverse problems in hydrogeology. Comptes Rendus de
l’Academie des Sciences Series IIA. Earth and Planet Sci
329(2):73–87. Elsevier Science

Doherty J, Brebber L, Whyte P (2002) PEST-Modelling dependent
parameter estimation. Water Mark Computing. Corinda (Aus-
tralia)

220

Hydrogeol J (2005) 13:206–222 DOI 10.1007/s10040-004-0404-7



Doherty J (2003) Groundwater model calibration using pilot points
and regularization. Ground Water 41(2):170–177

Duan QY, Sorooshian S, Gupta V (1992) Effective and efficient
global optimization for conceptual rainfall-runoff models.
Water Resour Res 28(4):1015–1031

Emselem Y, de Marsily G (1971) An automatic solution for the
inverse problem. Wat Resour Res 7(5):1264–1283

Gavalas GR, Shaw PC, Seinfeld JH, (1976) Reservoir history
matching by Bayesian estimation. Soc Petrol Eng J 261:337–
350

Gogu RC, Carabin G, Hallet V, Peters V, Dassargues A (2001)
GIS-based hydrogeological databases and groundwater model-
ing. Hydrogeol J 9(6):555–569

G�mez-Hern�ndez JJ, Sahuquillo A, Capilla JE (1997) Stochastic
simulation of transmissivity fields conditional to both trans-
missivity and piezometric data. 1. Theory. J Hydrol 204(1–
4):162–174

G�mez-Hern�ndez JJ, Wen XH (1998) To be or not to be multi-
Gaussian? A reflection on stochastic hydrogeology. Adv Water
Resour 21(1):47–61

Gupta HV, Bastidas LA, Sorooshian S, Shuttleworth WJ, Yang ZL
(1999) Parameter estimation of a land surface scheme using
multicriteria methods. J Geophys Res-Atmos 104(D16):19491–
19503

Hadamard J (1902) Sur les problemes aux derivees partielles et leur
signification physique. [On the problems about partial deriva-
tives and their physical significance]. Bull Univ Princeton
13:49–52

Hannan ES (1980) The estimation of the order of an ARMA pro-
cess. Ann Stat (8):1071–1081

Harrar WG, Sonnenborg TO, Henriksen HJ (2003) Capture zone,
travel time, and solute-transport predictions using inverse
modeling and different geological models. Hydrogeol J 11(5):
536–548

Hernandez AF, Neuman SP, Guadagnini A, Carrera J, (2003)
Conditioning mean steady state flow on hydraulic head and
conductivity through geostatistical inversion. Stochas Env Res
Risk Assess 17(5):329–338

Hill MC (1990) Relative efficiency of four parameter-estimation
methods in steady-state and transient ground-water flow mod-
els. In: Gambolati, Rinaldo, Brebbia, Gray, Pinder (eds) Proc
Computational Methods in Subsurface Hydrology, International
Conference on Computational Methods in Water Resources, pp
103–108

Hill MC (1992) A computer program (MODFLOWP) for estimat-
ing parameters of a transient, three-dimensional, ground-water
flow model using nonlinear regression. U.S. Geological Survey

Hill MC (1998) Methods and guidelines for effective model cali-
bration. US geological survey. Water-Resour Investigat Rep
98–4005, 91 pp, Colorado

Hill MC, Cooley RL, Pollock DW (1998) A controlled experiment
in ground water flow model calibration. Ground Water
36(3):520–535

Hoeksema RJ, Kitanidis PK (1984) Comparison of Gaussian con-
ditional mean and kriging estimation in the geostatistical so-
lution to the inverse problem. Water Resour Res 21(6):337–350

Hollenbeck KJ, Jensen KH. (1998) Maximum-likelihood estimation
of unsaturated hydraulic parameters. J Hydrol 210(1–4):192–
205

Hu LY (2002) Combination of Dependent Realizations within the
gradual deformation method. Math Geol 34(8):953–963

Hubbard S, Rubin Y (2000) A review of selected estimation tech-
niques using geophysical data. J Contamin Hydrol 45(2000):3–
34

Kashyap RL (1982) Optimal choice of AR and MA parts in au-
toregressive moving average models. IEEE Trans Pattern Anal
Mach Intel PAMI 4(2):99–104

Kitanidis PK, Vomvoris EG (1983) A geostatistical approach to the
inverse problem in groundwater modelling (steady state) and
one dimensional simulations. Water Resour Res 19(3):677–690

Kitanidis PK (1997) Introduction to geostatistics: applications to
hydrogeology. Cambridge University Press, Cambridge, NY

Knopman DS, Voss CI (1989) Multiobjective sampling design for
parameter-estimation and model discrimination in groundwater
solute transport. Water Resour Res 25(10):2245–2258

Kool JB, Parker JC, Van Genuchten MT (1987) Parameter esti-
mation for unsaturated flow and transport models. A Review J
Hydrol 91:255–293

Kool JB, Parker JC (1988) Analysis of the inverse problem for
transient unsaturated flow. Water Resour Res 24(6):817–830

Kowalsky MB, Finsterle S, Rubin Y (2004) Estimating flow pa-
rameter distributions using ground-penetrating radar and hy-
drological measurements during transient flow in the vadose
zone. Adv Water Resour 27:583–599

Kunstmann H, Kinzelbach W, Siegfried T (2002) Conditional first-
order second-moment method and its application to the quan-
tification of uncertainty in groundwater modeling. Water Re-
sour Res 38(4):Art. No. 1035

Larocque M, Banton O, Ackerer P, Razack M (1999) Determining
karst transmissivities with inverse modeling and an equivalent
porous media. Ground Water 37(6):897–903

Larsson A (1992) The International Projects INTRACOIN, HY-
DROCOIN and INTRAVAL. Adv Water Resour 15(1):85–87

Mantoglou A (2003) Estimation of Heterogeneous Aquifer Pa-
rameters from Piezometric Head Data using Ridge Functions
and Neural Networks. Stochas Environmen Risk Assess
17:339–352

Marquardt DW (1963) An algorithm for least-squares estimation of
non-linear parameters. J Soc Indust Appl Math 11(2)

McLaughlin D, Townley LLR (1996) A reassessment of the
groundwater inverse problem. Water Resour Res 32(5):1131–
1161

Medina A, Carrera J (1996) Coupled estimation of flow and solute
transport parameters. Water Resour Res 32(10):3063–3076

Medina A, Carrera J (2003) Geostatistical inversion of coupled
problems: dealing with computational burden and different
types of data. J Hydrol 281:251–264

Mehl SW, Hill MC (2003) Locally refined block-centered finite-
difference groundwater models. In: Kovar K, Zbynek H (eds)
Evaluation of parameter sensitivity and the consequences for
inverse modelling and predictions. IAHS Publication 277, p.
227–232

Meier P, Carrera J, Sanchez-Vila X (1999) A numerical study on
the relation between transmissivity and specific capacity in
heterogeneous aquifers. Ground Water 37(4):611–617

Meier P, Medina A, Carrera J (2001) Geoestatistical inversion of
cross-hole pumping tests for identifyingpreferential flow
channels within a shear zone. Ground Water 39(1):10–17

Meixner T, Gupta HV, Bastidas LA, Bales RC (1999) Sensitivity
analysis using mass flux and concentration. Hydrol Proc 13(14–
15):2233–2244

Nelson RW (1960) In place measurement of permeability in het-
erogeneous media, 1. Theory of a proposed method. J Geophys
Res 65(6):1753–1760

Nelson RW (1961) In place measurement of permeability in het-
erogeneous media, 2. Experimental and computational consid-
erations. J Geophys Res 66:2469–2478

Neuman SP (1973) Calibration of distributed parameter ground-
water flow models viewed as a multiple-objective decision
process under uncertainty. Water Resour Res 9(4):1006–1021

Neuman SP, Wierenga PJ (2003) A comprehensive strategy of
hydrogeologic modeling and uncertainty analysis for nuclear
facilities and sites. NU-REG/CR-6805, US Nuclear Regulatory
Commision, Washington, DC

Poeter EP, Hill MC (1997) Inverse models: A necessary next step in
groundwater modeling. Ground Water 35(2):250–260

Poeter EP, Hill MC (1998) Documentation of UCODE: a computer
code for universal inverse modeling. U.S. Geological Survey
Water-Resources Investigations Report 98–4080: 116 pp

Ramarao BS, Lavenue AM, de Marsily GH, Marietta MG (1995)
Pilot point methodology for automated calibration of an
ensemble of conditionally simulated transmissivity fields,
1. Theory and computational experiments. Water Resour Res
31(3):475–493

221

Hydrogeol J (2005) 13:206–222 DOI 10.1007/s10040-004-0404-7



Rao SVN, Thandaveswara BS, Bhallamudi SM (2003) Optimal
groundwater management in deltaic regions using simulated
annealing and neural networks. Water Resour Manag 17(6):
409–428

Rissanen J (1978) Modeling by shortest data description. Auto-
matica 14:465–471

Roggero F, Hu LY (1998) Gradual deformation of continuous
geostatistical models for history matching. In annual technical
conference, SPE 49004

Rubin Y (2003) Applied stochastic hydrogeology. Oxford Univer-
sity Press, New York 391 pp

Rubin Y, Dagan G (1987) Stochastic Identification of Transmis-
sivity and Effective Recharge in Steady Groundwater-Flow,
1 Theory. Water Resour Res 23(7):1185–1192

Rudin M, Beckmann N, Prosas R., Reese T, Bochelen D, Sauter A.
(1999) In vivo magnetic resonance methods in pharmaceutical
research: current status and perspectives. NMR Biomed
12(2):69–97

R
hli FJ, Lanz C, Ulrich-Bochsler S, Alt KW (2002) State-of-the-
art imaging in palaeopathology: the value of multislice com-
puted tomography in visualizing doubtful cranial lesions. Int J
Osteoarchaeol 12(5):372–379

Sahuquillo A, Capilla J, G�mez-Hern�ndez JJ, Andreu J (1992)
Conditional simulation of transmissivity fields honouring
piezom�trica data. In: Blain WR, Cabrera E Fluid Flow Mod-
eling, Comput. Mech., Billerica, Mass, pp 201–212

Sambridge M, Mosegaard K (2002) Monte Carlo methods in geo-
physical inverse problems. Rev Geophys 40(3):Art. No. 1009

Schwarz G (1978) Estimating the dimension of a model. Ann Stat
6(2):461–464

Stallman RW (1956) Numerical analysis of regional water levels to
define aquifer hydrology. Am Geophys Union Trans
37(4):451–460

Tihonov AN (1963) Regularization of incorrectly posed problems,
Sov. Math Dokl 4:1624–1627

Tsai FTC, Sun NZ, Yeh WG (2003) Global-local optimization
methods for the identification of threedimensional parameter
structure in groundwater modeling. Water Resour Res 39(2)
Art:1043

Usunoff E, Carrera J, Mousavi SF (1992) An approach to the design
of experiments for discriminating among alternative conceptual
models. Adv Water Resour 15(3):199–214

Varni M, Carrera J (1998) Simulation of groundwater age distri-
bution. Wat Resour Res 34(12):3271–3281

Vassolo S, Kinzelbach W, Schafer W (1998) Determination of a
well head protection zone by stochastic inverse modelling.
J Hydrol 206(3–4):268–280

Vecchia AV, Cooley RL (1987) Simultaneous confidence and
prediction intervals for nonlinear regression models with ap-

plication to a groundwater flow model. Water Resour Res
23(7):1237–1250

Vesselinov VV, Neuman SP, Illman WA (2001) Three-dimensional
numerical inversion of pneumatic cross-hole tests in unsatur-
ated fractured tuff 2. Equivalent parameters, high-resolution
stochastic imaging and scale effects. Water Resour Res
37(12):3019–3041

Wagner BJ, Gorelick SM (1987) Optimal groundwater quality
management under parameter uncertainty. Water Resour Res
23(7):1162–1174

Weiss R, Smith L (1998) Efficient and responsible use of prior
information in inverse methods. Ground Water 36(1):151–163

Weissmann GS, Carle SA, Fogg GE (1999) Three-dimensional
hydrofacies modeling based on soil survey analysis and tran-
sition probability geostatistics. Water Resour Res 35(6):1761–
1770

Woodbury AD, Rubin Y (2000) A full-Bayesian approach to pa-
rameter inference from tracer travel time moments and inves-
tigation of scale effects at the Cape Cod experimental site.
Water Resour Res 36(1):159–171

Woodbury AD, Smith JL, Dunbar WS (1987) Simultaneous in-
version of temperature and hydraulic data, 1. Theory and ap-
plication using hydraulic head data. Water Resour Res
23(8):1586–1606

Xiang Y, Sykes JF, Thomson NR (1992) A composite L1 parameter
estimator for model fitting in groundwater flow and solute
transport simulation. Water Resour Res 29(6):1661–1673

Yapo PO, Gupta HV, Sorooshian S (1998) Multi-objective global
optimization method for hydrological models. J Hydrol
204:83–87

Yeh TCJ, Liu SY (2000) Hydraulic tomography: Development of a
new aquifer test method. Water Resour Res 36(8):2095–2105

Yeh WWG, Yoon YS (1981) Aquifer parameter identification with
optimum dimension in parameterization. Wat Resour Res
17(3):664–672

Yeh WWG (1986) Review of parameter estimation procedures in
groundwater hydrology: The inverse problem. Water Resour
Res 22:95–108

Zimmerman DA, de Marsily G, Gotway CA, Marietta MG, Axness
CL, Beauheim RL, Bras RL, Carrera J, Dagan G, Davies PB,
Gallegos DP, Galli A, G�mez-Hern�ndez JJ, Grindrod P,
Gutjahr AL, Kitanidis PK, Lavenue AM, McLaughlin D,
Neuman SP, RamaRao BS, Ravenne C, Rubin Y (1998) A
comparison of seven geostatistically based inverse approaches
to estimate transmissivities for modeling advective transport by
groundwater flow. Water Resour Res 34(6):1373–1413

222

Hydrogeol J (2005) 13:206–222 DOI 10.1007/s10040-004-0404-7


